The g-periodic subvarieties for an automorphism g of positive entropy on a compact Kähler manifold

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE g-PERIODIC SUBVARIETIES FOR AN AUTOMORPHISM g OF POSITIVE ENTROPY ON A COMPACT KÄHLER MANIFOLD

For a compact Kähler manifold X and a strongly primitive automorphism g of positive entropy, it is shown that X has at most ρ(X) of g-periodic prime divisors. When X is a projective threefold, every prime divisor containing infinitely many g-periodic curves, is shown to be g-periodic (a result in the spirit of the Dynamic Manin-Mumford conjecture as in [17]).

متن کامل

Kähler Metrics on G

We study G-invariant Kähler metrics on G from the Hamiltonian point of view. As an application we show that there exist G × G-invariant Ricci-flat Kähler metrics on G for any compact semisimple Lie group G.

متن کامل

ON LOCAL HUDETZ g-ENTROPY

In this paper, a local approach to the concept of Hudetz $g$-entropy is presented. The introduced concept is stated in terms of Hudetz $g$-entropy. This representation is based on the concept of $g$-ergodic decomposition which is a result of the Choquet's representation Theorem for compact convex metrizable subsets of locally convex spaces.

متن کامل

Maximum Entropy Analysis for G/G/1 Queuing System (TECHNICAL NOTE)

This paper provides steady state queue-size distribution for a G/G/1 queue by using principle of maximum entropy. For this purpose we have used average queue length and normalizing condition as constraints to derive queue-size distribution. Our results give good approximation as demonstrated by taking a numerical illustration. In particular case when square coefficient of variation of inter-arr...

متن کامل

The Moduli Space of Flat G-bundles on a Compact Hyper-kähler Manifold

where Hom(π1(X), G) denotes the space of all group homomorphisms from the fundamental group π1(X) into G, and G acts on this space by conjugation. Let φ : π1(X) → G be a homomorphism, and let [φ] denote the corresponding point of LocG(X). Note that φ defines a π1(X)-module structure on g via the adjoint representation of G. Let us denote this π1(X)-module by gφ, and let Eφ denote the associated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2010

ISSN: 0001-8708

DOI: 10.1016/j.aim.2009.08.010